
Homework 1: Sets and Measures

CR07: Selected Topics Information Theory (Fall 2019). ENS de Lyon
samir.perlaza@inria.fr – Deadline: September 29, 2019 at 23h59.

1 Basic Operations with Sets
Proving the following statements is trivial. Often, the proof follows from the defini-
tion. Nonetheless, using the fact thatA = B if and only ifA ⊆ B and B ⊆ A provides
a formal element of proof.

1. Proof of Theorem 1.6. Let A, B and C be some sets. Prove the following identi-
ties

• A ∪ B = B ∪ A and A ∩ B = B ∩ A (Commutative Property)
• A ∪ B ∪ C = (A ∪ B) ∪ C = A ∪ (B ∪ C) and
A ∩ B ∩ C = (A ∩ B) ∩ C = A ∩ (B ∩ C) (Associative Property)

• (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C) and
(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C) (Distributive Property)

• A ∩A = A ∪A = A. (Idempotent Property)

2. Proof of Theorem 1.8. Given a non-empty subset A of a universal set O, prove
that a ∈ A implies a /∈ Ac.

3. Proof of Theorem 1.9. Given two sets A and B of a universal set O, such that
A ⊆ B, prove that Ac ⊇ Bc.

4. Proof of Theorem 1.10. Given two subsets A and B of a universal set O, prove
that

A \ B = A ∩ Bc. (1)

5. Proof of Theorem 1.15. Let A and B be two sets. Prove that

A ∪ B = (Ac ∩ Bc)c and (2)
A ∩ B = (Ac ∪ Bc)c . (3)
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2 Algebraic Structures
1. Let F and G be two σ-fields of O. Prove that, F ∩ G is also a σ-field of O.

2. Let F and G be two σ-fields of O. Provide an example to show that F ∪ G is
not necessarily a σ-field of O.

3 Measures
1. Proof of Theorem 2.4. Let (A,F ) and (B,G ) be two measurable spaces, such

that G = σ (C), for some set of subsets C. Prove that, a function f : A → B is
measurable relative to (A,F ) and (B,G ) if for all G ∈ C,

f−1(G) ∈ F . (4)

2. Proof of Theorem 2.5. Consider a measurable function f with respect to (A,E )
and (B,F ). Consider also a measurable function g with respect to (B,F ) and
(C,G ). Prove that the composition f ◦ g is measurable with respect to (A,E )
and (C,G ).

3. Proof of Theorem 2.11. Let µ be a measure on the σ-field F . Prove that

(a) µ (∅) = 0;
(b) ∀ (A,B) ∈ F 2, µ (A ∪ B) + µ (A ∩ B) = µ (A) + µ (B);
(c) ∀ (A,B) ∈ F 2, with A ⊂ B, µ (B) = µ (A) + µ (B \ A).

4. Proof of Theorem 2.12. Consider a σ-field F on a set O and let µ be a measure
on F . Consider also an infinite sequence of subsets A1,A2, . . . , in F . Prove
that

(a) if An ↑ A, lim
n→∞

µ(An) = µ(A); and

(b) if An ↓ A and µ(O) < ∞, lim
n→∞

µ(An) = µ(A).

5. Proof of Theorem 2.14. Let f be an arbitrary Borel measurable function on
(O,F ). Prove that the functions f+ and f− are both Borel measurable functions
on (O,F ).
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4 Radom-NikodymDerivatives
1. Proof of Theorem 2.20. Given a mesurable space (O,F ) and a non-negative

Borel measurable function f : O → R with respect to (O,F ), let ν : F → R+

be
ν(A) =

∫
A
fdµ. (5)

Prove that, ν is a measure on (O,F ).

2. Proof of Theorem 2.22. Let µ and ν be two measures on a given measurable
space (O,F ) with ν being absolutely continuous with respect to µ and µ being
σ-finite. Prove that

• for all x ∈ O, dµ
dµ(x) = 1.

• if f : O → R+ is a non-negative Borel measurable function with respect to
(O,F ), it holds that for all A ∈ F ,∫

A
fdν =

∫
A
f
dν
dµdµ; (6)

• if λ is a σ-finite measure on (O,F ), µ is absolutely continuous with respect
to λ, it holds that for all x ∈ O

dν
dλ(x) =

dν
dµ(x)

dµ
dλ(x); and (7)

• if µ is absolutely continuous with respect to ν, and ν is σ-finite, it holds
that for all x ∈ O

dν
dµ(x)

dµ
dν (x) = 1. (8)

3. Proof of Theorem 2.23. Let µ be a σ-finite measure on (O,F ) and ν1, ν2, . . . , νn
be finite measures on (O,F ) such that for all k ∈ {1, 2, . . . , n}, νk is absolutely
continuous with µ. Prove that for all x ∈ O,

d
n∑

t=1

νt

dµ (x) =
m∑
t=1

dνt
dµ (x). (9)
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Moreover, if ν is ameasure on (O,F ) such that for allA ∈ F , ν(A) = lim
n→∞

n∑
t=1

νt(A),

prove that ν is absolutely continuous with µ and

lim
n→∞

d
n∑

t=1

νt

dµ (x) =
dν
dµ(x). (10)
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