Homework 1: Sets and Measures

CR07: Selected Topics Information Theory (Fall 2019). ENS de Lyon samir.perlaza@inria.fr – Deadline: September 29, 2019 at 23h59.

1 Basic Operations with Sets

Proving the following statements is trivial. Often, the proof follows from the definition. Nonetheless, using the fact that $\mathcal{A} = \mathcal{B}$ if and only if $\mathcal{A} \subseteq \mathcal{B}$ and $\mathcal{B} \subseteq \mathcal{A}$ provides a formal element of proof.

1. Proof of Theorem 1.6. Let A, B and C be some sets. Prove the following identities

• $\mathcal{A} \cup \mathcal{B} = \mathcal{B} \cup \mathcal{A} \text{ and } \mathcal{A} \cap \mathcal{B} = \mathcal{B} \cap \mathcal{A}$	(Commutative Property)
• $\mathcal{A} \cup \mathcal{B} \cup \mathcal{C} = (\mathcal{A} \cup \mathcal{B}) \cup \mathcal{C} = \mathcal{A} \cup (\mathcal{B} \cup \mathcal{C})$ and $\mathcal{A} \cap \mathcal{B} \cap \mathcal{C} = (\mathcal{A} \cap \mathcal{B}) \cap \mathcal{C} = \mathcal{A} \cap (\mathcal{B} \cap \mathcal{C})$	(Associative Property)
• $(\mathcal{A} \cup \mathcal{B}) \cap \mathcal{C} = (\mathcal{A} \cap \mathcal{C}) \cup (\mathcal{B} \cap \mathcal{C})$ and $(\mathcal{A} \cap \mathcal{B}) \cup \mathcal{C} = (\mathcal{A} \cup \mathcal{C}) \cap (\mathcal{B} \cup \mathcal{C})$	(Distributive Property)
• $\mathcal{A} \cap \mathcal{A} = \mathcal{A} \cup \mathcal{A} = \mathcal{A}.$	(Idempotent Property)

- Proof of Theorem 1.8. Given a non-empty subset A of a universal set O, prove that a ∈ A implies a ∉ A^c.
- 3. Proof of Theorem 1.9. Given two sets \mathcal{A} and \mathcal{B} of a universal set \mathcal{O} , such that $\mathcal{A} \subseteq \mathcal{B}$, prove that $\mathcal{A}^{c} \supseteq \mathcal{B}^{c}$.
- 4. Proof of Theorem 1.10. Given two subsets A and B of a universal set O, prove that

$$\mathcal{A} \setminus \mathcal{B} = \mathcal{A} \cap \mathcal{B}^{\mathsf{c}}.$$
 (1)

5. Proof of Theorem 1.15. Let A and B be two sets. Prove that

 $\mathcal{A} \cup \mathcal{B} = (\mathcal{A}^{c} \cap \mathcal{B}^{c})^{c}$ and (2)

 $\mathcal{A} \cap \mathcal{B} = (\mathcal{A}^{\mathsf{c}} \cup \mathcal{B}^{\mathsf{c}})^{\mathsf{c}}.$ (3)

2 Algebraic Structures

- 1. Let \mathscr{F} and \mathscr{G} be two σ -fields of \mathcal{O} . Prove that, $\mathscr{F} \cap \mathscr{G}$ is also a σ -field of \mathcal{O} .
- Let F and G be two σ-fields of O. Provide an example to show that F ∪ G is not necessarily a σ-field of O.

3 Measures

Proof of Theorem 2.4. Let (A, F) and (B, G) be two measurable spaces, such that G = σ (C), for some set of subsets C. Prove that, a function f : A → B is measurable relative to (A, F) and (B, G) if for all G ∈ C,

$$f^{-1}(\mathcal{G}) \in \mathscr{F}.$$
 (4)

- Proof of Theorem 2.5. Consider a measurable function f with respect to (A, E) and (B, F). Consider also a measurable function g with respect to (B, F) and (C, G). Prove that the composition f ∘ g is measurable with respect to (A, E) and (C, G).
- 3. Proof of Theorem 2.11. Let μ be a measure on the σ -field \mathscr{F} . Prove that
 - (a) $\mu(\emptyset) = 0;$

(b)
$$\forall (\mathcal{A}, \mathcal{B}) \in \mathscr{F}^2, \mu (\mathcal{A} \cup \mathcal{B}) + \mu (\mathcal{A} \cap \mathcal{B}) = \mu (\mathcal{A}) + \mu (\mathcal{B});$$

(c) $\forall (\mathcal{A}, \mathcal{B}) \in \mathscr{F}^2$, with $\mathcal{A} \subset \mathcal{B}, \mu (\mathcal{B}) = \mu (\mathcal{A}) + \mu (\mathcal{B} \setminus \mathcal{A}).$

- 4. Proof of Theorem 2.12. Consider a σ -field \mathscr{F} on a set \mathcal{O} and let μ be a measure on \mathscr{F} . Consider also an infinite sequence of subsets $\mathcal{A}_1, \mathcal{A}_2, \ldots$, in \mathscr{F} . Prove that
 - (a) if $\mathcal{A}_n \uparrow \mathcal{A}$, $\lim_{n \to \infty} \mu(\mathcal{A}_n) = \mu(\mathcal{A})$; and
 - (b) if $\mathcal{A}_n \downarrow \mathcal{A}$ and $\mu(\mathcal{O}) < \infty$, $\lim_{n \to \infty} \mu(\mathcal{A}_n) = \mu(\mathcal{A})$.
- Proof of Theorem 2.14. Let f be an arbitrary Borel measurable function on (O, 𝔅). Prove that the functions f⁺ and f⁻ are both Borel measurable functions on (O, 𝔅).

4 Radom-Nikodym Derivatives

 Proof of Theorem 2.20. Given a mesurable space (O, F) and a non-negative Borel measurable function f : O → ℝ with respect to (O, F), let ν : F → ℝ₊ be

$$\nu(\mathcal{A}) = \int_{\mathcal{A}} f \mathbf{d}\mu.$$
(5)

Prove that, ν is a measure on $(\mathcal{O}, \mathscr{F})$.

- Proof of Theorem 2.22. Let μ and ν be two measures on a given measurable space (O, F) with ν being absolutely continuous with respect to μ and μ being σ-finite. Prove that
 - for all $x \in \mathcal{O}$, $\frac{d\mu}{d\mu}(x) = 1$.
 - if $f : \mathcal{O} \to \mathbb{R}_+$ is a non-negative Borel measurable function with respect to $(\mathcal{O}, \mathscr{F})$, it holds that for all $\mathcal{A} \in \mathscr{F}$,

$$\int_{\mathcal{A}} f \mathrm{d}\nu = \int_{\mathcal{A}} f \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \mathrm{d}\mu; \tag{6}$$

• if λ is a σ -finite measure on $(\mathcal{O}, \mathscr{F})$, μ is absolutely continuous with respect to λ , it holds that for all $x \in \mathcal{O}$

$$\frac{\mathrm{d}\nu}{\mathrm{d}\lambda}(x) = \frac{\mathrm{d}\nu}{\mathrm{d}\mu}(x)\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}(x); \text{ and } \tag{7}$$

 if μ is absolutely continuous with respect to ν, and ν is σ-finite, it holds that for all x ∈ O

$$\frac{\mathrm{d}\nu}{\mathrm{d}\mu}(x)\frac{\mathrm{d}\mu}{\mathrm{d}\nu}(x) = 1.$$
(8)

Proof of Theorem 2.23. Let μ be a σ-finite measure on (O, F) and ν₁, ν₂,..., ν_n be finite measures on (O, F) such that for all k ∈ {1, 2, ..., n}, ν_k is absolutely continuous with μ. Prove that for all x ∈ O,

$$\frac{\mathrm{d}\sum_{t=1}^{n}\nu_{t}}{\mathrm{d}\mu}(x) = \sum_{t=1}^{m}\frac{\mathrm{d}\nu_{t}}{\mathrm{d}\mu}(x). \tag{9}$$

Moreover, if ν is a measure on $(\mathcal{O}, \mathscr{F})$ such that for all $\mathcal{A} \in \mathscr{F}, \nu(\mathcal{A}) = \lim_{n \to \infty} \sum_{t=1}^{n} \nu_t(\mathcal{A})$, prove that ν is absolutely continuous with μ and

$$\lim_{n \to \infty} \frac{\mathrm{d}\sum_{t=1}^{n} \nu_t}{\mathrm{d}\mu}(x) = \frac{\mathrm{d}\nu}{\mathrm{d}\mu}(x). \tag{10}$$