Lecture 4: Multiple Access Channels

Course: Network Information Theory (Fall 2016) Dpt. of Computer Science. École Normale Supérieure de Lyon (ENS de Lyon) Samir M. Perlaza

1 Discrete Multiple Access Channel

Definition 1 (Discrete Memoryless Multiple Access Channel (DM-MAC)). A DM-MAC is defined by a tuple $(\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}, P_{Y|X_1X_2})$, where \mathcal{X}_1 and \mathcal{X}_2 are finite input alphabets, \mathcal{Y} is a finite output alphabet and $P_{Y|X_1X_2}$ is a conditional probability mass function such that for all $(x_1, x_2, y) \in \mathcal{X}_1 \times \mathcal{X}_2 \times \mathcal{Y}$, $P_{X_1X_2Y}(x_1, x_2, y) = P_{Y|X_1X_2}(y|x_1, x_2)P_{X_1}(x_1)P_{X_2}(x_2)$, where $P_{X_1}(x_1)$ and $P_{X_2}(x_2)$ are the corresponding probabilities of the input symbols x_1 and x_2 .

Definition 2 (Codes for Multiple Access Channel (DM-MAC)). A code for a DM-MAC $(\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}, P_{Y|X_1X_2})$ is determined by the tuple $(M_1, M_2, n, f_1^{(n)}, f_2^{(n)}, \phi^{(n)})$, where $f_1^{(n)}$ and $f_2^{(n)}$ are the encoding functions, such that for all $i \in \{1, 2\}$,

$$f_i^{(n)} \colon \{1, 2, \dots, M_i\} \to \mathcal{X}_i^n \tag{1}$$

and $\phi^{(n)}$ is the decoding function, such that

$$\phi^{(n)}: \mathcal{Y}^n \to \{1, 2, \dots, M_1\} \times \{1, 2, \dots, M_2\}.$$
 (2)

Definition 3 (Rate of a Code in the DM-MAC). The rate pair (R_1, R_2) associated to a code $(M_1, M_2, n, f_1^{(n)}, f_2^{(n)}, \phi^{(n)})$ satisfies for all $i \in \{1, 2\}$,

$$R_i = \frac{\log_2(M_i)}{n}.$$
(3)

Definition 4 (Probability of Error). The probability of error $P_{e}^{(n)}$ of a code $\left(M_{1}, M_{2}, n, f_{1}^{(n)}, f_{2}^{(n)}, \phi^{(n)}\right)$ in the DM-MAC $\left(\mathcal{X}_{1}, \mathcal{X}_{2}, \mathcal{Y}, P_{Y|X_{1}X_{2}}\right)$ is

$$P_{\mathbf{e}} = \Pr\left[\phi^{(n)}\left(\mathbf{Y}\right) \neq (W_1, W_2)\right]. \tag{4}$$

Definition 5 (Achievable Rates). The pair $(R_1, R_2) \in \mathbb{R}^2_+$ is achievable in the DM-MAC $(\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}, P_{Y|X_1X_2})$ if there exists a sequence of tuples $\{(2^{nR_1}, 2^{nR_2}, n, f_1^{(n)}, f_2^{(n)}, \phi^{(n)})\}_{n=1}^{\infty}$ such that the error probability tends to zero as the blocklength n tends to infinity. That is,

$$\limsup_{n \to \infty} P_{\mathbf{e}}^{(n)} = 0.$$
 (5)

Definition 6 (Capacity Region of the DM-MAC). The information capacity region $C_{\text{DM-MAC}} \subseteq \mathbb{R}^2_+$ of the DM-MAC $(\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}, P_{Y|X_1X_2})$ is the closure of all achievable information rate pairs (R_1, R_2) .

Theorem 1 (Capacity Region of the DM-MAC). The capacity region $C_{\text{DM-MAC}}$ of the DM-MAC $(\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}, P_{Y|X_1X_2})$ is

$$R_1 < I(X_1; Y | X_2),$$
 (6)

$$R_2 < I(X_2; Y|X_1), and$$
 (7)

$$R_1 + R_2 < I(X_1, X_2; Y),$$
 (8)

for some $P_{X_1} \in \triangle(\mathcal{X}_1)$ and $P_{X_2} \in \triangle(\mathcal{X}_2)$.

Theorem 2 (Capacity Region of the DM-MAC). The capacity region $C_{\text{DM-MAC}}$ of the DM-MAC $(\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}, P_{Y|X_1X_2})$ is a convex set of \mathbb{R}^2 .

Theorem 3 (Achievable Region of the DM-MAC). The achievable region \underline{C}_{DM-MAC} of the DM-MAC $(\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}, P_{Y|X_1X_2})$ is

$$R_1 < I(X_1; Y | X_2, Q),$$
 (9)

$$R_2 < I(X_2; Y | X_1, Q), and$$
 (10)

$$R_1 + R_2 < I(X_1, X_2; Y|Q),$$
 (11)

for some joint distribution $P_{QX_1X_2} = P_Q P_{X_2|Q} P_{X_2|Q}$ and $|Q| \leq 4$.

Theorem 4 (Converse Region of the DM-MAC). The converse region \overline{C}_{DM-MAC} of the DM-MAC $(\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}, P_{Y|X_1X_2})$ is

$$R_1 < I(X_1; Y | X_2, Q),$$
 (12)

$$R_2 < I(X_2; Y | X_1, Q), and$$
 (13)

$$R_1 + R_2 < I(X_1, X_2; Y|Q),$$
 (14)

for some joint distribution $P_{QX_1X_2} = P_Q P_{X_2|Q} P_{X_2|Q}$ and $|Q| \leq 4$.

Corollary 1 (Capacity Region of the DM-MAC). The achievable region \underline{C}_{DM-MAC} , the converse region \overline{C}_{DM-MAC} and the capacity region C_{DM-MAC} of the DM-MAC satisfy

$$\underline{\mathcal{C}}_{\mathrm{DM-MAC}} = \mathcal{C}_{\mathrm{DM-MAC}} = \mathcal{C}_{\mathrm{DM-MAC}}.$$
 (15)

2 Gaussian Multiple Access Channel

Figure 1: Two-User Discret Memoryless Multiple Access Channel

Consider the two-user memoryless Gaussian MAC (G-MAC) in Fig. 1. The goal of the communication is to convey the independent messages M_1 and M_2 from transmitters I and 2 to the common receiver using a blocklength of $n \in \mathbb{N}$ channel uses. The messages W_1 and W_2 are mutually independent and uniformly distributed over the sets $\mathcal{W}_1 \triangleq \{1, \ldots, 2^{nR_1}\}$ and $\mathcal{W}_2 \triangleq \{1, 2, \ldots, 2^{nR_2}\}$, where $R_1 = \frac{\log_2 |\mathcal{W}_1|}{n}$ and $R_2 = \frac{\log_2 |\mathcal{W}_2|}{n}$ denote the transmission rates. For all $i \in \{1, 2\}$, the channel inputs $X_i = (X_{i,1}, X_{i,2}, \ldots, X_{i,n}) \in \mathbb{R}^n$ are generated at the beginning of the transmission using the encoding functions

$$f_i^{(n)} \colon \mathcal{W}_i \to \mathbb{R}^n. \tag{16}$$

That is $X_i = f_i^{(n)}(W_i)$ and moreover, the channel inputs $X_{i,1}, X_{i,2}, \ldots, X_{i,n}$ satisfy an expected average *input power constraint*:

$$\frac{1}{n}\sum_{t=1}^{n} \mathbb{E}\left[X_{i,t}^{2}\right] \leqslant P_{i},\tag{17}$$

where P_i denotes the energy rate constraint of transmitter *i*. For all $t \in \{1, 2, ..., n\}$, the channel inputs $X_{1,t}$ and $X_{2,t}$ generate the channel output Y_t according to a probability density function $f_{Y|X_1X_2}$ for which the following holds

$$Y_t = h_1 X_{1,t} + h_2 X_{2,t} + Z_t, (18)$$

where h_1 and h_2 are the corresponding constant non-negative channel coefficients from transmitter *i* to the receiver. The noise terms Z_1, Z_2, \ldots, Z_n are zero-mean unitvariance real Gaussian random variables.

The receiver produces an estimate $(\hat{W}_1^{(n)}, \hat{W}_2^{(n)}) = \Phi^{(n)}(\mathbf{Y})$ of the message-pair (W_1, W_2) via a decoding function $\Phi^{(n)} \colon \mathbb{R}^n \to \mathcal{W}_1 \times \mathcal{W}_2$, and the average probability of error is

$$P_{\mathbf{e}}^{(n)} = \Pr\left[(\hat{W}_1, \hat{W}_2) \neq (W_1, W_2)\right].$$
(19)

The G-MAC is fully described by two parameters: the signal to noise ratios with respect to transmitter 1, denoted by SNR_1 and to transmitter 2, denoted by SNR_2 . Note that given that the variance of the noise is 1, these parameters are defined as follows:

$$SNR_1 = P_1$$
 and (20)

$$SNR_2 = P_2.$$
 (21)

Theorem 5 (Capacity Region of the G-MAC). The capacity region C_{G-MAC} of the G-MAC with parameters SNR_1 and SNR_2 is

$$R_1 < \frac{1}{2} \log (1 + \mathrm{SNR}_1),$$
 (22)

$$R_2 < \frac{1}{2}\log(1 + \mathrm{SNR}_2), \text{ and}$$
 (23)

$$R_1 + R_2 < \frac{1}{2} \log \left(1 + \text{SNR}_1 + \text{SNR}_2 \right).$$
 (24)