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1 Discrete Multiple Access Channel
Definition 1 (Discrete Memoryless Multiple Access Channel (DM-MAC)). A DM-
MAC is defined by a tuple

Ä
X1,X2,Y , PY |X1X2

ä
, where X1 and X2 are finite input alphabets,

Y is a finite output alphabet and PY |X1X2 is a conditional probability mass function such that for
all (x1, x2, y) ∈ X1 × X2 × Y , PX1X2Y (x1, x2, y) = PY |X1X2(y|x1, x2)PX1(x1)PX2(x2),
where PX1(x1) and PX2(x2) are the corresponding probabilities of the input symbols x1 and x2.

Definition 2 (Codes for Multiple Access Channel (DM-MAC)). A code for a DM-MACÄ
X1,X2,Y , PY |X1X2

ä
is determined by the tuple

(
M1,M2, n, f

(n)
1 , f

(n)
2 , ϕ(n)

)
, where f (n)

1 and
f
(n)
2 are the encoding functions, such that for all i ∈ {1, 2},

f
(n)
i : {1, 2, . . . ,Mi} → X n

i (1)

and ϕ(n) is the decoding function, such that

ϕ(n) : Yn → {1, 2, . . . ,M1} × {1, 2, . . . ,M2}. (2)

Definition 3 (Rate of a Code in the DM-MAC). The rate pair (R1, R2) associated to a
code

(
M1,M2, n, f

(n)
1 , f

(n)
2 , ϕ(n)

)
satisfies for all i ∈ {1, 2},

Ri =
log2(Mi)

n
. (3)

Definition 4 (Probability of Error). The probability of error P (n)
e of a code(

M1,M2, n, f
(n)
1 , f

(n)
2 , ϕ(n)

)
in the DM-MAC

Ä
X1,X2,Y , PY |X1X2

ä
is

Pe = Pr
î
ϕ(n) (Y ) ̸= (W1,W2)

ó
. (4)
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Definition 5 (Achievable Rates). The pair (R1, R2) ∈ R2
+ is achievable in the DM-MACÄ

X1,X2,Y , PY |X1X2

ä
if there exists a sequence of tuples

{(
2nR1 , 2nR2 , n, f

(n)
1 , f

(n)
2 , ϕ(n)

)}∞

n=1
such that the error probability tends to zero as the blocklength n tends to infinity. That is,

lim sup
n→∞

P (n)
e =0. (5)

Definition 6 (Capacity Region of the DM-MAC). The information capacity region
CDM−MAC ⊆ R2

+ of the DM-MAC
Ä
X1,X2,Y , PY |X1X2

ä
is the closure of all achievable in-

formation rate pairs (R1, R2).
Theorem 1 (Capacity Region of the DM-MAC). The capacity region CDM−MAC of the
DM-MAC

Ä
X1,X2,Y , PY |X1X2

ä
is

R1 <I(X1;Y |X2), (6)
R2 <I(X2;Y |X1), and (7)

R1 +R2<I(X1, X2;Y ), (8)

for some PX1 ∈ △ (X1) and PX2 ∈ △ (X2).
Theorem 2 (Capacity Region of the DM-MAC). The capacity region CDM−MAC of the
DM-MAC

Ä
X1,X2,Y , PY |X1X2

ä
is a convex set of R2.

Theorem 3 (Achievable Region of the DM-MAC). The achievable region CDM−MAC of
the DM-MAC

Ä
X1,X2,Y , PY |X1X2

ä
is

R1 <I(X1;Y |X2, Q), (9)
R2 <I(X2;Y |X1, Q), and (10)

R1 +R2<I(X1, X2;Y |Q), (11)

for some joint distribution PQX1X2 = PQPX2|QPX2|Q and |Q| ⩽ 4.
Theorem 4 (Converse Region of the DM-MAC). The converse region CDM−MAC of the
DM-MAC

Ä
X1,X2,Y , PY |X1X2

ä
is

R1 <I(X1;Y |X2, Q), (12)
R2 <I(X2;Y |X1, Q), and (13)

R1 +R2<I(X1, X2;Y |Q), (14)

for some joint distribution PQX1X2 = PQPX2|QPX2|Q and |Q| ⩽ 4.
Corollary 1 (Capacity Region of the DM-MAC). The achievable region CDM−MAC, the
converse region CDM−MAC and the capacity region CDM−MAC of the DM-MAC satisfy

CDM−MAC = CDM−MAC = CDM−MAC. (15)
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2 Gaussian Multiple Access Channel

Figure 1: Two-User Discret Memoryless Multiple Access Channel

Consider the two-user memoryless Gaussian MAC (G-MAC) in Fig. 1. The goal
of the communication is to convey the independent messages M1 and M2 from trans-
mitters 1 and 2 to the common receiver using a blocklength of n ∈ N channel uses.
The messages W1 and W2 are mutually independent and uniformly distributed over
the sets W1 ≜ {1, . . . , 2nR1} and W2 ≜ {1, 2, . . . , 2nR2}, where R1 =

log2 |W1|
n

and
R2 =

log2 |W2|
n

denote the transmission rates. For all i ∈ {1, 2}, the channel inputs
X i = (Xi,1, Xi,2, . . . , Xi,n) ∈ Rn are generated at the beginning of the transmission
using the encoding functions

f
(n)
i : Wi → Rn. (16)

That is X i = f
(n)
i (Wi) and moreover, the channel inputs Xi,1, Xi,2, . . . , Xi,n satisfy an

expected average input power constraint:
1

n

n∑
t=1

E
î
X2

i,t

ó
⩽ Pi, (17)

where Pi denotes the energy rate constraint of transmitter i. For all t ∈ {1, 2, . . . , n},
the channel inputs X1,t and X2,t generate the channel output Yt according to a proba-
bility density function fY |X1X2 for which the following holds

Yt = h1X1,t + h2X2,t + Zt, (18)

where h1 and h2 are the corresponding constant non-negative channel coefficients
from transmitter i to the receiver. The noise terms Z1, Z2, . . . , Zn are zero-mean unit-
variance real Gaussian random variables.
The receiver produces an estimate (Ŵ (n)

1 , Ŵ
(n)
2 ) = Φ(n)(Y ) of the message-pair (W1,W2)

via a decoding function Φ(n) : Rn → W1 ×W2, and the average probability of error is

P (n)
e = Pr

î
(Ŵ1, Ŵ2) ̸= (W1,W2)

ó
. (19)

The G-MAC is fully described by two parameters: the signal to noise ratios with
respect to transmitter 1, denoted by SNR1 and to transmitter 2, denoted by SNR2.
Note that given that the variance of the noise is 1, these parameters are defined as
follows:

SNR1=P1 and (20)
SNR2=P2. (21)
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Theorem 5 (Capacity Region of the G-MAC). The capacity region CG−MAC of the G-
MAC with parameters SNR1 and SNR2 is

R1 <
1

2
log (1 + SNR1) , (22)

R2 <
1

2
log (1 + SNR2) , and (23)

R1 +R2<
1

2
log (1 + SNR1 + SNR2) . (24)
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