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1 Notation
Let X be a random variable taking values in the set X .

• The probability mass function (pmf) of X is PX : X → [0, 1].

• The set of all possible pmfs on X is △ (X ), i.e., PX ∈ △ (X ).

• The support of PX is supp (PX) = {x ∈ X : PX (x) > 0}.

Let Y be a second random variable

• The joint pmf of X and Y is PXY : X × Y → [0, 1].

• The conditional pmf of Y conditioning on X is PY |X : X × Y → [0, 1].

2 Preliminaries
• Definition 1 (Strict Positiveness) The pmf PX is strictly positive if:

∀x ∈ X , PX(x) > 0. (1)

• Definition 2 (Absolute Continuity) Given two probability measures P and Q
defined on a measurable space (X ,F (X )), P is absolutely continuous with respect to Q
(P << Q) if

∀A ∈ F (X ) : Q(A) = 0 implies P (A) = 0. (2)
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• If P << Q then supp (Q) ⊆ supp (P )

• If P << Q and Q << P then supp (Q) = supp (P )

• Definition 3 (Independence) The random variables X1, X2, . . . , Xn are mutu-
ally independent if ∀(x1, x2, . . . , xn) ∈ X1 ×X1 × . . .×Xn :

PX1X2...Xn(x1, x2, . . . , xn) =
n∏

t=1

PXt(xt). (3)

• Definition 4 (Conditional Independence) The random variables X and Z are
mutually independent conditioning on Y if ∀(x, y, z) ∈ X × Y × Z :

PXY Z(x, y, z) =

®
PX|Y (x|y)PZ|Y (z|y)PY (y) if PY (y) > 0
0 otherwise (4)

• Definition 5 (Markov Chain) The random variablesX1, X2, . . . , Xn form a Markov
chain, notation X1 → X2 → · · · → Xn, if ∀(x1, x2, . . . , xn) ∈ X1 ×X1 × . . .×Xn :

PX1X2...Xn(x1, x2, . . . , xn) = PX1(x1)PX2|X1(x2|x1)PX3|X2(x3|x2) · · ·PXn|Xn−1(xn|xn−1) if
n∏

t=1

PXt(xt) > 0

0 otherwise
(5)

• X → Y → Z implies conditional independence between X and Z given Y .

• X1 → X2 → · · · → Xn implies Xn → Xn−1 → · · · → X1.

• Proposition 1 (Markov Subchains) LetN = {1, 2, . . . , n} be a finite set with a
partitionN1,N2, . . . ,Nm, withn > 2andm > 2. Assume that for all (r, s) ∈ Ni×Nj ,
with i > j, it holds that r > s. Let also X1 → X2 → · · · → Xn form a Markov chain
and consider the random variable ZNi

=
Ä
Xk1 , Xk2 , . . . , Xk|Ni|

ä
, with kℓ ∈ Ni for all

ℓ ∈ Ni. Then, the random variables ZN1 ,ZN2 , . . . ,ZNm , form the following Markov
chain:

ZN1 → ZN2 → · · · → ZNm . (6)
Moreover, for a fixed 2 < q ⩽ m,

ZN ′
1
→ ZN ′

2
→ · · · → ZN ′

q
, (7)

is also a Markov chain, where N ′
i ⊆ Ni, for all i ∈ {1, 2, . . . , q}.
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• Example 1 (Markov Subchains) Let X1 → X2 → · · · → X6 form a Markov
chain. Then, the following are also Markov chains:

X1 → X2 → X3 (8)
X2 → X4 → X6 (9)
(X1, X2) → X3 → X4 (10)
X1 → (X3, X4) → X6 (11)

• Definition 6 (Variational Distance) Let P and Q be two probability measures
on the mesurable space (X ,F(X )). The variational distance between P and Q, denoted
by V (P,Q) is

V (P,Q) = 2 sup
A∈F(X )

|P (A)−Q(A)| (12)

• Proposition 2 Let P , Q and S be three probability measures on the mesurable space
(X ,F(X )). Then, the following holds

V (P,Q)≥ 0 [positiveness] (13a)
V (P,Q)= V (Q,P ) [symmetry] (13b)
V (P, S)⩽V (P,Q) + V (Q,S) [triangle inequality] (13c)

• Proposition 3 LetP andQ be two probability measures on the measurable space (X ,F(X )).
Then, V (P,Q) = 0 if and only if P and Q are identical.

• From Proposition 2 and Proposition 3, total variation is a distance in the formal
sense.

• Proposition 4 LetP andQ be two probability measures on the measurable space (X ,F(X )),
with X a countable set. Then,

V (P,Q) =
∑
x∈X

|P (x)−Q(x)|. (14)

• Proposition 5 Let PXY and QXY be two joint probability measures on the measur-
able space (X × Y ,F(X × Y)). Let PX and QX be the marginals of PXY and QXY ,
respectively. Then,

V (PX , QX) ⩽ V (PXY , QXY ). (15)

3



• Proposition 6 LetPXY andQXY be two joint probability measures on the measurable
space (X × Y ,F(X × Y)). Let also PX and QX be the marginals of PXY and QXY ,
respectively and assume that

PXY =PXPY |X , and (16)
QXY=QXPY |X . (17)

Then,
V (PX , QX) = V (PXY , QXY ). (18)

• Definition 7 (KL-Divergence) Let P and Q be two probability distributions de-
fined on the set X . Then, the KL-divergence between P and Q, denoted by D (P ||Q),
is

D (P ||Q) =
∑
x∈X

P (x) log2
Ç
P (x)

Q(x)

å
. (19)

• Proposition 7 LetP andQ be two probability distributions defined on the setX . Then,

D (P ||Q)⩾0 (20)

• D (P ||Q) ̸= D (Q||P )

• If P ≪̸ Q then D (P ||Q) = ∞

• If P ≪ Q then D (P ||Q) ⩽ ∞

3 Shannon’s Information Measures
• Definition 8 (Entropy) LetX be a countable set and let alsoX be a random variable

with pmf PX : X → [0, 1]. The entropy of X , denoted by H(X), is

H(X) = −
∑

x∈supp(PX)

PX(x) log2 (PX(x)) . (21)

• H(X) = −EX

î
log2 (PX(X))

ó
• 0 ⩽ H(X) ⩽ log2 (|X |)

• H(X) is a function of PX and it is continous in △ (X ) w.r.t. total variation dis-
tance.
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• H(f(X)) ⩽ H(X), with equality only when f is a one-to-one mapping over
supp (PX)

• Definition 9 (Joint Entropy) LetX andY be two countable sets and let alsoX and
Y be two random variables with joint pmf PXY : X × Y → [0, 1]. The joint entropy of
X and Y , denoted by H(X,Y ), is

H(X,Y ) = −
∑

(x,y)∈supp(PXY )

PXY (x, y) log2 (PXY (x, y)) . (22)

• H(X,Y ) = −EXY

î
log2 (PXY (X, Y ))

ó
• Definition 10 (Conditional Entropy) Let X and Y be two countable sets and let

also X and Y be two random variables with pmf PX and conditional pmf PY |X . The
entropy of X conditioning on Y , denoted by H(X|Y ), is

H(X|Y ) = −
∑

y∈supp(PY )

PY (y)
∑

x∈supp(PX|Y =y)

PX|Y (x|y) log2
Ä
PX|Y (x|y)

ä
. (23)

• H(X|Y ) = −EXY

î
log2

Ä
PX|Y (X|Y )

äó
• H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y )

• H(X) ⩾ H(X|Y )

• H(X1, . . . , Xn) = H(X1) +H(X2|X1) +
n∑

t=3

H(Xt|X1, . . . , Xt−1)

• H(X1, . . . , Xn) ⩽
n∑

t=1

H(Xt)

• H(X1, . . . , Xn|Y ) = H(X1|Y ) +H(X2|Y,X1) +
n∑

t=3

H(Xt|Y,X1, . . . , Xt−1)

• Definition 11 (Mutual Information) LetX andY be two random variables with
strictly positive joint pmf PXY and marginal pmfs PX and PY . Then, the mutual infor-
mation between X and Y , denoted by I(X;Y ), is

I(X;Y ) = −
∑

(x,y)∈X×Y
PXY (x, y) log2

Ç
PXY (x, y)

PX(x)PY (y)

å
(24)
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• I(X;Y ) = EXY

[
log2

(
PY |X(Y |X)

PY (Y )

)]
= EXY

[
log2

(
PX|Y (X|Y )

PX(X)

)]
• I(X;Y ) ⩾ 0

• I(X;Y ) = 0 if and only if X and Y are mutually independent

• I(X;Y ) = I(Y ;X)

• I(X;X) = H(X)

• I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

• I(X;Y ) = H(X) +H(Y )−H(Y,X)

• I(X;Y, Z) ⩾ I(X;Y ), with equality if and only if X → Y → Z.

• Definition 12 (Conditional Mutual Information) Let X , Y and Z be three
random variables with strictly positive joint pmf PXY Z and conditional pmfs PXY |Z ,
PX|Z and PY |Z . Then, the mutual information between X and Y conditioning on Z , de-
noted by I(X, Y |Z), is

I(X;Y |Z) = −
∑

(x,y,z)∈X×Y×Z
PXY Z(x, y, z) log2

(
PXY |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z)

)
. (25)

• I(X;Y |Z) = 0 if and only if X → Z → Y

• I(X1, . . . , Xn;Y ) ⩾ 0

• I(X1, . . . , Xn;Y ) = I(X1;Y ) + I(X2;Y |X1) +
n∑

t=3

I(Xt;Y |X1, X2, . . . , Xt−1)

• I(X1, . . . , Xn;Y |Z) = I(X1;Y |Z)+I(X2;Y |Z,X1)+
n∑

t=3

I(Xt;Y |ZX1, X2, . . . , Xt−1)

• Proposition 8 Let X , Y and Z be three random variables such that PXY Z(x, y, z) =
PX(x)PY (y)PZ|XY (z|x, y) for all (x, y, z) in supp (PXY Z). Then,

I(X;Y |Z) ⩾ I(X;Y ). (26)

• Proposition 9 Let X , Y and Z be three random variables such that Z → X → Y .
Then, I(X;Y |Z) ⩽ I(X;Y ).
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• Proposition 10 (Data Processing Inequality) Let X , Y and Z be three ran-
dom variables such that X → Y → Z . Then, I(X;Z) ⩽ I(X;Y ).

• Proposition 11 (Fano’s Inequality) Let X and X̂ be two random variables with
supp (X) = supp

Ä
X̂
ä

. Let also E = 1{X ̸=X̂} be a binary random variable. Then,

H
Ä
X|X̂

ä
⩽ H (E) + PE(1) log2 (|X | − 1) . (27)

7


