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I Notation
Let X be a random variable taking values in the set X’.
¢ The probability mass function (pmf) of X is Px : X — [0, 1].
* The set of all possible pmfs on X is A (X), i.e., Px € A (X).
* The support of Py is supp (Px) = {z € X : Px (z) > 0}.
Let Y be a second random variable
* The joint pmfof X and Y is Pxy : & x ) — [0,1].

* The conditional pmf of Y conditioning on X is Py|x : X x Y — [0,1].

2 Preliminaries
* Definition 1 (Strict Positiveness) The pmf Px is strictly positive if:

V€ X, Px(x)>0. ®

* Definition 2 (Absolute Continuity) Given two probability measures P and ()
defined on a measurable space (X, F (X)), P is absolutely continuous with respect to ()

(P << Qif
VAe F(X):Q(A) =0 implies P(A)=0. )



* If P << @ then supp (Q) C supp (P)
If P << @ and Q << P then supp (Q) = supp (P)

* Definition 3 (Independence) The random variables X1, X, . .., X, are mutu-
ally independent if ¥ (x1,x9,...,2,) € X1 X Xy X ... X &,

PXle.‘.Xn<I17 T2,. .. 7%) = H P, (ft) (3)
t=1

Definition 4 (Conditional Independence) The random variables X and 7 are
mutually independent conditioningonY if ¥(x,y,2) € X x Y x Z:

Pxy (x|y) Pzy (2|y) Py (y) if  Pyly)>0
0 otherwise

PXYZ(Z’,?/, Z) = { (4)

Definition 5 (Markov Chain) The random variables X1, Xs, . . ., X,, form a Markov
chain, notation X1 — Xo — -+ = Xy, if V(21,29, ..., 2,) € Xy X X X ... X &,y

PXle...Xn(Ila T, ... ;%) =
Px, (1) Pxy x, (#2]21) Py x, (3]22) - - Pxyix, - (2nl2no1) ][ Px.(z¢) >0
=1
0 otherwise

(5)

* X =Y — Z implies conditional independence between X and Z given Y.
* X; = Xo = — X, implies X;, > X, 1 — -+ = X].

* Proposition 1 (Markov Subchains) Let N = {1,2,... n} be afinite set with a
partition N1, Na, ..., Ny, withn > 2andm > 2. Assume that for all (r, s) € N;xNj,
with i > j, it bolds that v > s. Let also X, — Xy — - -+ — X, form a Markov chain
and consider the random variable Z ;, = (X . . Ni|>’ with ky, € N for all
0 € N;. Then, the random variables Z n,, Z v, . . . , Z v;,,, form the following Markov
chain:

Ly, =Ly, — = Zy,. ©)

Moreover, for a fixed2 < ¢ < m,
Ly = Ly — - — Ly, ()

is also a Markov chain, where N| C N, foralli € {1,2,...,q}.



Example 1 (Markov Subchains) Let X; — Xy — -+ — X form a Markov
chain. Then, the following are also Markov chains:

X, — Xo — X3 ®
Xy — X4 — Xs (9)
(X1, X3) = X3 — X, (10)
X1 — (X3, Xy) = X (1)

Definition 6 (Variational Distance) Let P and () be two probability measures
on the mesurable space (X, F(X')). The variational distance between P and (), denoted
by V (P,Q)is

V(P,Q) =2 sup [P(A)—Q(A)] (2)

AEF(X)

Proposition 2 Let P, () and S be three probability measures on the mesurable space
(X, F(X)). Then, the following holds

V(P,Q)> 0 [positiveness] (132)
V(P,Q)= V(Q, P) [symmetry] (136)
V(P,S)KV(P,Q)+V(Q,S) [triangle inequality} (13¢)

Proposition 3 Let P and () be two probability measures on the measurable space (X, F (X)).
Then, V (P, Q) = 0 if and only if P and () are identical.

From Proposition 2 and Proposition 3, total variation is a distance in the formal
sense.

Proposition 4 Let P and () be two probability measures on the measurable space (X , F (X)),
with X a countable set. Then,

V(P.Q) = ¥ |P(x) - Q). (14)

reX

Proposition 5 Let Pyy and Q) xy be two joint probability measures on the measur-
able space (X x Y, F(X x Y)). Let Px and Q) x be the marginals of Pxy and Q) xvy,
respectively. Then,

V(Px,Qx) < V(Pxy,Qxy). (15)



* Proposition 6 Let Pxy and () xy be two joint probability measures on the measurable
space (X x Y, F(X x )Y)). Let also Px and () x be the marginals of Pxy and Q)xy,
respectively and assume that

PXY :PXpy|X, and (I6)
Qxy=0QxPyx. (17)

Then,
V(Px,Qx) =V (Pxy,Qxy)- (18

* Definition 7 (KL-Divergence) Let P and () be two probability distributions de-
fined on the set X. Then, the KL-divergence between P and (), denoted by D (P||Q),
is

D(PIIQ) = 3 P(@)log, (ggi) . (19)

* Proposition 7 Let P and () be two probability distributions defined on the set X . Then,
D (P[|Q)=0 (20)

D (P||Q) # D (QI|P)
If P << Q then D (P||Q) =

If P < Q then D (P]|Q) < o0

Shannon’s Information Measures

* Definition 8 (Entropy) Let X be a countable set and let also X be a random variable
with pmf Px : X — [0, 1]. The entropy of X, denoted by H(X), is

H(X)=- Y Px(x)log, (Px(z)). (21)

x€supp(Px)

+ H(X) = —Ex [log, (Px(X))]
+ 0 < H(X) < log, (| X

* H(X) is a function of Px and it is continous in A (X) wr.t. total variation dis-
tance.



H(f(X)) < H(X), with equality only when f is a one-to-one mapping over
supp (Px)

Definition 9 (Joint Entropy) Let X and Y be two countable sets and let also X and
Y be two random variables with joint pmf Pxy : X x Y — [0, 1]. The joint entropy of
X andY , denoted by H(X,Y), is

H(va) == Z PXY(xvy)logQ (ny(ﬂf,y)). (22)

(=,y)€supp(Pxy)

H(X, Y) = _EXY [lOgQ (PXY(X7 Y))]

Definition 10 (Conditional Entropy) Let X and ) be two countable sets and let
also X and'Y be two random variables with pmf Px and conditional pmf Py x. The
entropy of X conditioningon'Y , denoted by H(X|Y), is

HXY)=- Y Py > Py (zly) log, (Pxy (z]y)). ©3)

y€Esupp(Py) mesupp(wa:y)

H(X|Y) = —Exy [log, (Pxpy (X[Y))]
H(X,)Y)=HX)+HY|X)=H(Y)+ HX|Y)
H(X) > H(X|Y)

n

H(X17 s 7Xn) = H(Xl) + H<X2|X1) + ZH<Xt‘X17 s 7Xt—1)

=3
H(Xy,...,X,) < ZH(Xt)

t=1
H(X17 s >Xn|Y) = H(X1|Y) + H(XQ‘Ya Xl) + Z H(Xt‘ya le s 7Xt71)

=3

Definition 11 (Mutual Information) Let X andY be two random variables with
strictly positive joint pmf Pxy and marginal pmfs Px and Py. Then, the mutual infor-
mation between X and Y , denoted by 1(X;Y'), is

Pxy(z,y) )
I(X:Y) = — P log [ Dxr(@y)
(X5Y) (w)GZXXy xv (z,y) log, (Px(x)Py(y) (24)



106) = By o (P55 = B e, (“372)]
I(X;Y) >

I(X;Y) = 0if and only if X and V" are mutually independent
I(X;Y)=I(Y; X)

[(X;X) = H(X)

[(X;Y) = H(X) - HX|Y) = H(Y) — H(Y]X)
[(X;Y)=H(X)+HY)-H(Y,X)

(

I(X;Y,Z) > I(X,;Y), with equality if and only if X — Y — Z.

Definition 12 (Conditional Mutual Information) Let X, Y and Z be three
random variables with strictly positive joint pmf Pxy ; and conditional pmfs Pxy\z,
Px |z and Py \z. Then, the mutual information between X andY conditioning on Z, de-
noted by 1(X,Y |Z), is

I(X;Y|Z)=— Z Pxyz(x,y, 2) log2 <

(z,y,2) EXXYXZ

Pxyz(z,y|?) )
Pra(elo) Brgyle)) -

I(X;Y|Z)=0ifandonlyif X - Z = Y
I(Xy,..., X Y) >0

](Xl, Ce ,Xn,Y) = ](XhY) -+ ](XQ, Y|X1) + ZI(Xt; Y|X1,X27 e aXt—l)
t=3

-[(le s 7Xn7Y|Z) = I(X17Y|Z)+I(X27Y‘Z7 X1)+Z I(Xt;Y|ZX17X27 s )Xt—l)
t=3

Proposition 8 Let X, Y and 7 be three random variables such that Pxy z(x,y, z) =
Px(x) Py (y) Pz xy (2|x,y) for all (x,y, z) in supp (Pxyz). Then,

I(X;Y|Z) > I(X;Y). (26)

Proposition 9 Let X, Y and 7 be three random variables such that 7 — X — Y.
Then, I(X;Y|Z) < I(X;Y).



* Proposition 10 (Data Processing Inequality) Ler X, Y and Z be three ran-
dom variables such that X — Y — Z. Then, (X ;Z) < I(X;Y).

« Proposition 11 (Fano’s Inequality) Let X and X be two random variables with
supp (X) = supp (X). Letalso E = 1 [x£X} be a binary random variable. Then,

H (X|X) < H (E) + Py(1) log, (|X] - 1). @)



